Defesa de Exame de Qualificação – Julio Cezar Vendrichoski – 3/10/2019

26/09/2019 16:19
Defesa de Exame de Qualificação
Aluno Julio Cezar Vendrichoski
Orientador Prof. Edson Roberto De Pieri, Dr. – DAS/UFSC
Coorientador Prof. Ebrahim Same El Youssef, Dr. –UFSC
Data 3/10/2019  10h00  (quinta-feira)

Sala PPGEAS I (piso superior)

Banca Prof. Eugênio de Bona Castelan Neto, Dr. – DAS/UFSC (presidente);

Prof. Henrique Simas, Dr. – EMC/UFSC;

Prof. André Gustavo Scolari Conceição, Dr. – LAR/UFBA.

Título Aerial Robots Interacting with the Environment
Abstract: Nowadays, typical commercial Unmanned Aerial Vehicles (UAVs) are extensively employed in many fields of application, but mostly for passive observation as autonomous moving sensors. However, tasks that are crucial for economic and social progress, such as those related to food production, infrastructure construction and maintenance are not restricted to remote inspection or passive observation, but often require a physical interaction through a specific tool. The use of aerial robots has emerged as a relevant research topic in the search for solutions that may support the accomplishment of tasks requiring physical interaction with a higher level of flexibility than the one provided by fixed-base manipulators, for instance. Aerial robots can fly over the terrain, reaching targets fast and efficiently while exchanging forces with the surrounding environment (to push/pull/slide and manipulate objects). However, due to the different nature of this mobile robot, new challenges need to be addressed. The objectives of this work are in the field of autonomous aerial robots interacting with the surrounding environment, investigating the inherent capabilities and scientific challenges on the design and modeling of aerial robots platforms, environmental interaction analysis, robust control strategies and constrained control methods for such robotic systems. Two aerial robot platforms are presented, each one concerning a specific class of Aerial Physical Interaction (APhI) task. The mathematical model of these vehicles is derived taking into account external forces that show up during the interaction. Then, two control approaches are analyzed, the Terminal Sliding Mode, which provides robustness and adaptive features, and the Explicit Reference Governor, that acts on a pre-stabilized system ensuring constraints fulfillment and set-point tracking.